
On the Analysis of the Zeus Botnet Crimeware

Toolkit

H. Binsalleeh †‡, T. Ormerod †‡, A. Boukhtouta †‡, P. Sinha †‡, A. Youssef †‡, M. Debbabi †‡, and L. Wang †‡
† National Cyber Forensics and Training Alliance Canada

‡ Computer Security Laboratory, Concordia University

Montreal, Quebec, Canada

{h binsal,t ormero,a boukh,p sinh,youssef,debbabi,wang}@ciise.concordia.ca

Abstract—In this paper, we present our reverse engineering
results for the Zeus crimeware toolkit which is one of the recent
and powerful crimeware tools that emerged in the Internet
underground community to control botnets. Zeus has reportedly
infected over 3.6 million computers in the United States. Our
analysis aims at uncovering the various obfuscation levels and
shedding the light on the resulting code. Accordingly, we explain
the bot building and installation/infection processes. In addition,
we detail a method to extract the encryption key from the
malware binary and use that to decrypt the network commu-
nications and the botnet configuration information. The reverse
engineering insights, together with network traffic analysis, allow
for a better understanding of the technologies and behaviors
of such modern HTTP botnet crimeware toolkits and opens
an opportunity to inject falsified information into the botnet
communications which can be used to defame this crimeware
toolkit.

I. INTRODUCTION

The tremendous growth in the use of Internet technologies

in different walks of life has molded the living habits of

most people. The traditional ways of trading and marketing,

education, communication, and broadcasting are replaced by

the innovative web-based applications and online systems.

However, these Internet applications are abused by perpetrators

and hackers for committing different kinds of crimes including

spamming, phishing, and distributed denial of service (DDoS)

attacks. In the majority of Internet mediated cyber crimes,

the victimization tactics that are used vary from the simple

anonymity to the identity theft and impersonation. Therefore, a

surge of interest has been expressed lately in Internet security.

Recent studies [1] indicate that botnets are the primary plat-

form through which cyber criminals create global cooperative

networks that are instrumental in most cyber criminal attacks.

A bot is a software robot or a malware instance that runs

autonomously and automatically on a compromised machine

without being noticed by the victim user. The bot code is often

written by skilled programmers and usually supports several

kinds of malicious functionalities [2] that are instrumental in

a variety of attacks and malicious activities. The term botnet,

derived from the word bot, is a network of bots that are

controlled by an attacker called a botmaster or botherder. The

alarming increase in the power of botnets and its infectious

effects have turned botnets into one of the biggest threats

to the Internet security [3]. Currently, botnets are one of the

root causes of most Internet attacks and malicious activities.

Although the existence of botnets has been noticed for a

long time, it is the recent growth of cyber crimes, which

are mediated by botnets, that has attracted the attention of

IT security researchers.

Each new generation of bots distinguishes itself by explor-

ing different command and control (C&C) techniques, through

which they can be updated and directed by the botmaster. One

of the options employed is the Internet Relay Chat (IRC)

protocol used by Agabot, SDBot, and SpyBot [2]. Some

bots such as BlackEnergy [4], Rustock [5], and clickbot.A [6]

rely on HTTP since it hardens the detection process because

HTTP traffic is allowed in most network policies. Other types

of botnets do not rely on centralized command and control

mechanisms. Instead, they use distributed control techniques to

avoid the single point of failure problem. For example, Storm

[7], [8] and Nugache [9] use peer-to-peer networks to organize

and control their network.

The primary objective of this paper is to conduct a reverse

engineering study of the Zeus crimeware toolkit. The rationale

underlying this exercise is two fold: First, as members of

the National Cyber Forensics and Training Alliance (NCFTA)

Canada, we frequently conduct reverse engineering and anal-

ysis of prominent malicious codes. The intent underlying

such studies is to better understand malware inner workings,

behaviors and enabling techniques and technologies. The in-

sights gained from this will better position us to counteract

the threats and contribute to cyber crime fight. Second, the

choice of Zeus is the result of a discussion with our NCFTA

partners. We reached the conclusion in June 2009 that Zeus

was major threat that deserves a reverse engineering effort.

In fact, this prediction was confirmed in July 2009 when a

security publication from Damballa positioned Zeus as the

number 1 botnet threat with 3.6 million infections in the

US alone (about 19% of the installed base of PCs in the

US [10]). It was also estimated that Zeus is guilty in 44%

of the banking malware infections [11]. Recently, Symantec

Corporation referred to this crimeware toolkit as the “King of

the Underground Crimeware Toolkits” [12].

The Zeus crimeware toolkit has become one of the favorite

tools for hackers because of its user friendly interface and

its competitive price in the underground communities. This

crimeware allows attackers to configure and create malicious

binaries, which are mainly used to steal users’ Internet banking

2010 Eighth Annual International Conference on Privacy, Security and Trust

978-1-4244-7550-6/10/$26.00 ©2010 IEEE 31

accounts, credit cards, and other sensitive information that

can be sold on the black market [13]. It also has the ability

to administrate the collected stolen information through the

use of a control panel, which is used to monitor, control, and

manage the infected systems. To the best of our knowledge,

there has been no reverse engineering attempt to de-obfuscate

and analyze Zeus.

In this paper, we present a case study on the reverse

engineering steps necessary to understand the inner working

of the Zeus crimeware toolkit and its components. The main

contributions of this paper are three folds. First, we present

a detailed reverse engineering analysis of the Zeus crimeware

toolkit to unveil its secrets and enable its mitigation. Second,

we designed a tool to automat the recovery of the encryption

key used for the bot communication and the extraction of

the configuration information from the binary bot executables.

This opens an opportunity to inject falsified information into

the botnet communications which can be used to defame this

crimeware toolkit. Third, we provide a breakdown for the

structure of the Zeus botnet network messages.

The remainder of this paper is organized as follows. Section

II is dedicated to the description of the Zeus crimeware toolkit

components and how they are integrated. Section III details the

network behavior analysis that is inferred from observing the

network traffic between a bot instance and a the associated

command and control server. In Section IV, we detail the four

obfuscation levels and explain how they have been uncovered.

This step led to the actual un-obfuscated code of the bot,

and later to revealing the infection/installation process, and

the encryption key that makes it possible to decrypt the

C&C communications between the infected machine and the

botnet infrastructure. We also present a sample decrypted

communication session between an infected machine and a

C&C server. Our conclusion is given in Section V.

II. DESCRIPTION OF THE ZEUS CRIMEWARE TOOLKIT

The Zeus crimeware toolkit is a set of programs which

have been designed to setup a botnet over a high-scaled

networked infrastructure. Generally, the Zeus botnet aims to

make machines behave as spying agents with the intent of

getting financial benefits. The Zeus malware has the ability to

log inputs that are entered by the user as well as to capture

and alter data that are displayed into web-pages [13]. Stolen

data can contain email addresses, passwords, online banking

accounts, credit card numbers, and transaction authentication

numbers. In our analysis, we examine the Zeus crimeware

toolkit v.1.2.4.2, which is considered as the latest stable

publicly available version in the underground community. The

overall structure of the Zeus crimeware toolkit consists of five

components:

1) A control panel which contains a set of PHP scripts that

are used to monitor the botnet and collect the stolen

information into MySQL database and then display it to

the botmaster. It also allows the botmaster to monitor,

control, and manage bots that are registered within the

botnet.

2) Configuration files that are used to customize the botnet

parameters. It involves two files: the configuration file

config.txt that lists the basic information, and the

web injects file webinjects.txt that identifies the

targeted websites and defines the content injection rules.

3) A generated encrypted configuration file config.bin,

which holds an encrypted version of the configuration

parameters of the botnet.

4) A generated malware binary file bot.exe, which is

considered as the bot binary file that infects the victims’

machines.

5) A builder program that generate two files: the encrypted

configuration file config.bin and the malware (actual

bot) binary file bot.exe.

On the C&C side, the crimeware toolkit has an easy way

to setup the C&C server through an installation script that

configures the database and the control panel. The database

is used to store related information about the botnet and

any updated reports from the bots. These updates contain

stolen information that are gathered by the bots from the

infected machines. The control panel provides a user friendly

interface to display the content of the database as well as to

communicate with the rest of the botnet using PHP scripts. The

botnet configuration information is composed of two parts: a

static part and a dynamic part. In addition, each Zeus instance

keeps a set of targeted URLs that are fed by the web injects file

webinject.txt. Instantly, Zeus targets these URLs to steal

information and to modify the content of specific web pages

before they get displayed on the user‘s screen. The attacker can

define rules that are used to harvest a web form data. When a

victim visits a targeted site, the bot steals the credentials that

are entered by the victim. Afterward, it posts the encrypted

information to a drop location that is meant to store the bot

update reports. This server decrypts the stolen information and

stores it into a database.

III. ZEUS BOTNET NETWORK ANALYSIS

In this section, we explain the network communication that

occurs between the C&C server (the server containing the

control panel) and an infected machine. Such analysis can be

used to write IDS rules and anti-virus detection routines. In

order to perform the network analysis, we built a sandbox

environment to collect and analyze the network traces that are

generated from the communication between the C&C server

and one of the bot instances. We configured a web server,

which act as the C&C server and the drop location. This

server hosts all resources that are required to operate the botnet

(config.bin file, PHP scripts and the MySQL database).

To customize the malware, we used the builder program

to generate the malware binary file which is configured to

communicate with a C&C server. Within our environment,

fake websites are generated to reflect real scenarios of botnet

attacks. All necessary entries of the configuration file as well

as the web injects scripts are modified to target the fake

website. After infecting a machine with the bot binary file, we

collected network traces for one day. During this session, the

32

user of the infected machine visited the targeted website and

then used login credentials, personal information, and credit

card information for testing purposes.

By analyzing the bot network communications, we can learn

the overall behavior of the Zeus botnet. The network behavior

of the Zeus botnet constitutes a starting point, where we

can dig into the crimeware toolkit functionalities. Since the

Zeus botnet is based on the HTTP protocol, it uses a pull-

method to synchronize the botnet communications. From the

collected network traces between a bot and a C&C server, we

observe that the bot periodically checks specific server for an

up-to-date configuration and bot binary files. Moreover, the

HTTP communication messages between the two entities are

encrypted. By observing the network trace, we managed to

determine the following communication pattern between the

C&C server and the infected machine:

1) The infected client starts the communication by sending

a request message GET /config.bin to the C&C

server. This message is a request to fetch the configuration

file for the botnet.

2) The C&C server replies with the encrypted configuration

file config.bin.

3) The client receives the encrypted configuration file and

decrypts its content by using an encryption key, which is

embedded inside the bot binary file.

4) Situation where, the botmaster wants to involve the

infected machine to manage the botnet, the infected

machine has to provide its external IP address and report

any use of Network Address Translation (NAT). In order

to know the external IP address that is seen by the

botnet servers, the infected machine makes a request to a

specific server. Afterward, this server informs the infected

machine about their externally facing IP address. The

server’s URL is provided in the static configuration file.

5) The bot posts the stolen information and its update status

reports to the C&C server POST/gate.php.

Figure 1 illustrates the communication pattern between the

C&C server and the infected machine. The communication

pattern is repeated frequently depending on a timing variable,

which is defined in the botnet configuration file.

IV. REVERSE ENGINEERING ANALYSIS

The increasing usage of malicious software has pushed

security experts to try to find the secrets related to the

development of malware design. A common technique to

detect the existence of a given malware is by tracking system

modifications. The changes include what an operating system

runs at startup, changes of default web pages, generated traffic,

infection of processes, packing/unpacking of binaries, and

changes to the registry keys. One way to look for these

changes is to reverse engineer the malware and try to reveal

what is hidden behind the assembled code. In our case, this

kind of analysis provides an invaluable insight into the inner-

working of the crimeware toolkit in general and about the

malware binary in particular. In the stream of this thinking,

we investigate the builder program and malware binary file.

GET
 /
config.bin

<encrypted>
 config.bin

Zeus Bot Client
 Zeus C&C
Infrastructure

GET
 /
ip.php
 (sent to any server)

OK (HTTP 200)

IP address

OK (HTTP 200)

OK (HTTP 200)

POST
 /
gate.php

Fig. 1. Communications pattern of Zeus

To this end, we mainly employ “IDA Pro” [14] to disassemble

the binaries and debug them to understand their business logic.

The analysis is two folds: First, the analysis that is related to

the builder program. Second, the analysis that is linked to the

malware binary file.

A. The Zeus Builder Program Analysis

The builder is one of the components of the Zeus crimeware

toolkit. It uses the configuration files as an input to generate

the bot binary file and the encrypted configuration file.

We analyze the builder program first because it uses a

known obfuscation technique that can be easily removed. In

addition, the GUI allows us to categorize different subroutines,

which make up the builder program functionalities. Using

the “PaiMei” reverse engineering framework [15] (which is

a reverse engineering framework that provides many reverse

engineering tasks such as fuzzer assistance, code coverage

tracking, and data flow tracking), we were able to see ex-

actly what functions of the builder program are invoked by

a specific action. This immensely aids in simplifying the

reverse engineering efforts as it allows us to focus on a few

key subroutines at a time. In the following, we summarize

the reverse engineering analysis of the functionalities of the

builder program.

Building the Configuration File Functionality:

This function is responsible for encoding the clear

text of the configuration files of the botnet into a

specific structure. Afterwards, it encrypts the whole

structure with the RC4 encryption algorithm using

the configured encryption key.

Building the Malware Binary File Functionality:

The main function of the builder program resides

within this functionality, which is responsible for

building the customized malware binary files. In

general, it builds the malware executable file into a

33

portable executable (PE) standard format. Moreover,

it sets some parameters according to the current

configuration file and then produces the malware

binary file.

Malware Infection Removal Functionality:

The builder has a functionality that ascertains the

presence of Zeus bot and removes it. When this

functionality runs, it performs a detection routine by

checking the existence of special registry keys that

are inserted during the bot infection process. Also, it

detects the presence of some files in the system. If

these files are detected, the builder program cleans

some registry keys and instructs the bot to shutdown

itself and then deletes the stored Zeus binary file

from the system.

The expected behavior of the bot when it receives

the shutdown command is to disinfect itself from the

currently running processes. The analysis reveals the

name of files that the builder checks their presence in

the system. Table I represents these file names with

their description.

B. Zeus Bot Binary Analysis

As depicted in Figure 2, the bot binary file contains four

segments: a “text/code” segment, an “imports” segment, a

“resources” segment, and a “data” segment. Therefore, we

begin our analysis at the malware Entry Point (EP) that

resides in the “text/code” segment. The initial analysis of the

disassembly reveals that only a small part of the “text/code”

block is valid computer instructions. The rest of the binary

is highly obfuscated, which means that the computer cannot

use these segments directly unless it is de-obfuscated at some

stage.

1) De-obfuscation Process: Using the “IDA Pro” debugger,

we were able to debug the malware and step through the

instructions to analyze and understand the logic of the de-

obfuscation routines. Each routine reveals some information

which is used by the other routines until all obfuscation layers

are removed. The first de-obfuscation routine contains a 4-

byte long decryption key and a one-byte long seed value.

These two values are used to decrypt a block of data from the

“text/code” segment and then write the decrypted data in the

virtual memory. The result of the first de-obfuscation routine

revealed some new code segments. These segments contain

three de-obfuscation routines as shown in Figure 3. During

our analysis, the initial offset address of the memory for the

code segments was 0x390000. After the address space of the

second de-obfuscation routine, there was an 8-byte key that the

“IDA Pro” incorrectly identified as code instructions. Figure 4

illustrates the location of the 8-byte key. In the following, we

explain the main logic of the second de-obfuscation routine.

1) First, it copies two binary blocks from the “text/code”

segment, concatenates them together, and then writes

them into the virtual memory. The first text block contains

data with many zero value bytes that will be filled by the

next text block as shown in Figure 5.

EP

Resources

Imports

Code

Text

Text

Data

401000

409A11

409AD7

410000

4100E4

411000

4160CA

bot.exe

Fig. 2. Segments of the bot.exe binary file

De-obfuscation 2

De-obfuscation 3 & 4

8-byte key

Other functions

390000

39007A

39013C

3901F5

Virtual Memory

390082

Fig. 3. De-obfuscated code in the virtual memory

2) The routine scans every byte on the first text block and

when it encounters a “hole” (zero byte), it will overwrite

the zero byte with the next available byte in the “filler”

text block. This is repeated until all “holes” are filled (See

Figure 6).

The filled text segment turns to be the main outcome of the

second de-obfuscation routine. However, this text segment is

still not readable and not considered as computer instructions.

By utilizing the 8-byte key, the third de-obfuscation routine

starts by decrypting the output of the second de-obfuscation.

Similar to the first de-obfuscation routine, this routine uti-

lizes the 8-byte key and performs an eXclusive-OR (XOR)

operation instead of an addition operation. Finally, the fourth

de-obfuscation layer contains heavy computations to initialize

and prepare some parameters for the rest of the malware

operations. It uses the decrypted bytes revealed by the previous

routines to modify the rest of the “text/code” segment. After

this routine completes, we can observe the real starting point

of the Zeus malware. Even though the “text/code” segment is

now valid, the Zeus bot binary employs two additional layers

34

File Description

C:/WINDOWS/system32/sdra64.exe A copy of a bot which has infected “system32”
folder.

C:/WINDOWS/system32/lowsec/local.ds A data storage file which is used to store the
configuration file that is used by a given bot locally
in the system.

C:/WINDOWS/system32/lowsec/user.ds A data storage file which is used to log the users’
activities that have been recorded by the bot.

TABLE I
DESCRIPTION OF THE FILES THAT ARE CREATED DURING THE BOT INFECTION

Fig. 4. The 8-byte key

Text with missing data

Filler text

3901F5

39C276

39E9C3

Virtual Memory

Fig. 5. The virtual memory used by the second de-obfuscation routine

of obfuscation. These two layers are de-obfuscated during

the installation procedure. They consist of logical loops that

transform arbitrarily long strings into a readable text. The first

layer is performed on a set of strings that the malware uses to

load the DLL libraries, retrieve function names, and for other

purposes during the installation process. Similarly, the second

layer is used to decrypt URLs in the static configuration of

the configuration file. The main logic of these two routines

are described in Algorithm IV.1 and Algorithm IV.2.

De-obfuscation 2

De-obfuscation 3

8-byte key

De-obfuscation 4

Virtual Memory

Filled text

Filler text

00
 42
 E1
 C1

50
 00
 B3
 C1

12
 2D
 00
 BD

00
 F2
 6C
 BB

7E
 62
 82
 A4

7E
 42
 E1
 C1

50
 62
 B3
 C1

12
 2D
 82
 BD

A4
 F2
 6C
 BB

Text with missing data

Filler text

Filled text

Fig. 6. The result from the second de-obfuscation routine

Algorithm IV.1: DECRYPT STRING(enc string)

seed = 0xBA;

String new string = new String(enc string.length());

for i = 0 to enc string.length()

do

{

new string[i] = (enc string[i] + seed) %256;

seed = (seed + 2);

return (new string)

Algorithm IV.2: DECRYPT URL(enc url)

String new url = new String(enc url.length());

for i = 0 to enc url.length()

do































if (i%2 == 0)
then

new url[i] = (enc url[i] + 0xF6 - i * 2) %256;

else

new url[i] = (enc url[i] + 0x7 + i * 2)%256;

return (new url)

2) Bot Installation Process: After the first four de-

obfuscation routines are executed, the malware begins the

installation process. The installation process aims at preparing

and then launching the malicious activities of the malware.

In the following, we explain the main procedure of the

installation process.

35

1) The Zeus malware dynamically loads the LoadLibrary

and the GetProcAddress methods from

Kernel32.dll library.

2) It decrypts the set of strings, which become DLL methods

names, into the virtual memory according to Algorithm

IV.1.

3) The LoadLibrary and the GetProcAddress meth-

ods are then used to load the further methods, as de-

crypted in step 2, from the Windows DLLs.

4) The Zeus malware enumerates the current process table

looking for targeted processes such as the main process

name for the Outpost personal firewall application from

Agnitum Security outpost.exe and the main process

name for the personal firewall of the ZoneLabs Internet

security zlclient.exe. If any of these processes is

found, then the Zeus malware aborts the installation

process.

5) The Zeus malware appends the path C:/Windows/Sys

tem32/sdra64.exe to HKEY_LOCAL_MACHINE/S

OFTWARE/Microsoft/WindowsNT/CurrentVers

ion/Winlogon/Userinit registry key. This entry

enables the Zeus malware to initiate its installation

process again during Windows startup.

6) Finally, it injects its entire Zeus binary file from the

memory address 0x400000 to 0x417000 into the

virtual memory of winlogon.exe process. After that,

Zeus passes the control to this process by creating a new

user thread, which is immediately executed.

Similarly, the bot uses these steps when the infected machine

is restarted. However, there are few steps that are performed

only during the initial Zeus installation process. These steps

are related to the creation of a local copy of the malware and

storing it on the infected system for further activities. In the

following, we list the main process of creating a local copy

of the malware.

(a) The Zeus malware searches for any existing copies of

previous Zeus infection files sdra64.exe, and then

erases it from the infected machine. This behavior would

occur when the Zeus binary file is being updated with a

newer version of the malware.

(b) It makes an exact copy of itself and then saves it

to C:/Windows/System32/sdra64.exe. To evade

signature-based detection systems, it appends some ran-

domly generated bytes to the end of the file.

(c) In order to hide itself, the bot duplicates the Modi-

fication, Access, and Creation times (MAC times) in-

formation from Ntdll.dll library, and applies them

to the sdra64.exe. The intent of this is to make

sdra64.exe appears to be a system file that has been

around since Windows was first installed.

(d) In another level of hiding the created file, it sets the

sdra64.exe file attributes to system and hidden, so that

the user cannot see the file using the standard file explorer.

At this stage, the malware is already injected within the

winlogon.exe running process. On the other hand, the cur-

rently running bot exits and leaves the control to the injected

process. However the installation procedure is continued by the

user thread that was started in the winlogon.exe process as

described in step 6. From the injection process, we infer that

the entire Zeus binary file is copied into the winlogon.exe

process. Therefore, the injected Zeus instance starts by remov-

ing the remaining two layers of the obfuscation by applying

Algorithm IV.1 and Algorithm IV.2 as described in Section

IV-B1. When the injected malware decrypts all the strings,

the Zeus instance employs the piggyback thread technique (to

control the infected system through legitimate process) within

the winlogon.exe process. However, Zeus instances only

perform few tasks before they create another thread and

exit themselves. This is another attempt by the designers of

the Zeus malware to evade detection. Afterwards, the Zeus

instance starts injecting itself into another process, namely

the svchost.exe process. This injected process initiates

a communication channel with the C&C server to download

the latest updates on the configuration file and the malware

itself. Later, the targeted processes get injected with the latest

malware payload and then activate the process of stealing

information through API hooking techniques. During the mal-

ware update process, the following changes were observed on

the file system:

1) A new folder is created at the path C:/Windows/Syst

em32/lowsec. Hiding techniques similar to these that

are applied to the sdra64.exe are also applied to the

created folder.

2) Two new files, local.ds and user.ds, are created

and placed in the new created folder. The user.ds

stores the dynamic configuration file, and the local.ds

logs the stolen information until the Zeus malware is

ready to send it to the drop location.

The malware that resides on the winlogon.exe process acts

as the brains for the Zeus malware activities. It communicates

and coordinates all the infected process using the named pipe

_AVIRA_2109. Table II shows the list of the commands that

are supported by the Zeus malware.

3) Key Extraction: As mentioned in Section II, the Zeus

botnet uses a configuration file that contains a static informa-

tion. Specifically, this part of the configuration is stored inside

the malware binary file in a specific structure. During the de-

obfuscation processes, this structure is recovered and placed in

the virtual memory (In our analysis, starting at 0x416000).

All information in the structure is completely de-obfuscated

except for two URLs: url_compip and url_config.

These URLs can be de-obfuscated using Algorithm IV.2.

The url_compip is the web location to determine the IP

address of the infected host, and the url_config is the web

location to download the configuration file for the botnet. The

static configuration structure also contains an RC4 substitution

table that is generated by the encryption key specified in the

configuration file. Throughout our analysis, we noticed that the

substitution table were generated by the RC4s key-scheduling

algorithm and then we verified that the encryption employed

36

Command Purpose Return Value

1 Retrieve Zeus version number 4 bytes in a buffer

2 Retrieve name of the botnet Ascii string in buffer

3 Uninstall Bot n/a

4 Open the local.ds file or create it if it does not exist n/a

5 Close the local.ds file n/a

6 Open the user.ds or create it if it does not exist n/a

7 Close the user.ds n/a

8 Close the sdra64.exe n/a

9 Open the sdra64.ex n/a

10 Retrieve loader file path Wide character string

11 Retrieve configuration file path Wide character string

12 Retrieve log file path Wide character string

13 Crash the winlogon process intentionally n/a

TABLE II
LIST OF THE ZEUS MALWARE COMMANDS

by Zeus is done by the RC4 algorithm. The recovered static

configuration can be used in different ways to gain some

control over the botnet. The most valuable piece of information

is the substitution table which can be used to decrypt all

the communications of the Zeus botnet. Moreover, it can

be used to decrypt the configuration file as well as the

stolen information. In order to recover the static configuration

structure described above, we have to go through all the de-

obfuscation phases discussed in Section IV-B1. This requires

executing the malware until it finishes all the de-obfuscation

layers. Emulation techniques are considered as a safe and

fast procedures to achieve our goals. Using Python scripting

language along with the “IDAPython” plugin [16], we were

able to emulate all the de-obfuscation routines and extract the

substitution table from the static configuration structure. These

extracted keys allows for decrypting the botnet communication

traffic and all the encrypted files. Similarly, it allows us to

extract any information from the static configuration structure,

such as the URLs for any future updates, which point to

the C&C servers. Our experimental results show that any

subversion of Zeus (v.1.2.x.x) can be fully analyzed using our

methodology because it holds the same logical blocks.

C. Packet Decryption

After extracting the RC4 encryption key as described in

Section IV-B3, we used it to decrypt the botnet communica-

tions. By decrypting the transmitted HTTP payload, we are

able to uncover the structure of the messages between the

bot and the C&C server. We analyzed the structure of the

HTTP POST messages (POST /gate.php) which carries

all the updates and reports from the bots to the C&C server.

Each bot posts a variable number of encrypted bytes based

on the sent data to the C&C server in a specific structure.

The payload is encrypted using an RC4 encryption algorithm

only. As depicted in Figure 7, we restore the structure of the

messages as follows:

1) Each message starts with a header that consists of 28-

bytes. This header contains an MD5 hash value for the

rest of the message.

2) As shown in Figure 7, the rest of the message follows

in the form of repeated data blocks where each block

consists of:

a) An entry header with 16-bytes that contains informa-

tion about the current data entry. The first 4-bytes serve

as the type of the reported information, which can be

recognized by the bot and the control panel. The third

4-bytes determine the length of the carried information.

b) A variable number of bytes that is specified in the

entry header. These bytes represent one piece of the

information that is transmitted within this packet.

8E020000
 0000000000000000
 0C0000005B626D42FC682051D56D72A4

20270000
 00000000
 0D010000
 0D010000

Message length
 Unknown
 Md5 hash value

Data type
 Unknown
 Data length
 Data length

http://192.168.252.132/catalog/checkout_process.php

Referer:

http://192.168.252.132/catalog/checkout_confirmation.php

Keys: user@email.com123456 4408041234567893 Data:

cc_owner=Name cc_number_nh-dns=4408041234567893

cc_expires_month=01

cc_expires_year=10x=47y=3

Message Header

Message Entry

Entry
 Header

Data

4-bytes
 4-bytes
 4-bytes
 4-bytes

4-bytes
 8-bytes
 16-bytes

Fig. 7. A decrypted sample message

It should be noted that the encrypted communication of the

Zeus botnet is vulnerable to the RC4 keystream reuse attack

because there is no Initialization Vector (IV) setup in every

session, i.e., the same RC4 keystream is reused to encrypt all

messages.

37

V. CONCLUSION

The Zeus crimeware toolkit is an advanced tool used to

generate very effective malware that facilitates criminal activ-

ities. The integrated tootkit technology harden the detection of

the malware at the host level. Similarly, the use of encrypted

HTTP messages for C&C makes it difficult to detect any clear

behavior at the network level. Moreover, the multiple levels

of malware obfuscation presents a burden in front the analysts

to find information about the C&C servers or to generate

binary signatures. In this work, we presented a detailed reverse

engineering analysis of the Zeus crimeware toolkit to unveil its

underlying architecture and enable its mitigation. We have also

designed a tool to automat the recovery of the encryption key

and the extraction of the configuration information from the

binary bot executables. Furthermore, we provided a breakdown

for the structure of the Zeus botnet network messages.

Our analysis of the C&C communications indicates that

the RC4 algorithm is used in a poor way to encrypt these

communications (keystream reuse). In addition to the knowl-

edge of the network messages structure, we can launch an

active countermeasures by interacting with the botnets servers

using the extracted encryption key. For example, we can

inject falsified information into the botnet communications for

various purposes, such as defaming the botnet business model

by reducing the effectiveness of their services [17], [18]. A

useful extension to our work is to use the extracted encryption

key mechanism in order to analyze and track down the Zeus

C&C servers or to defame the toolkit, e.g., by returning fake

(invalid) credit card numbers.

REFERENCES

[1] L. Wenke, W. Cliff, and D. David, Eds., Botnet Detection: Countering

the Largest Security Threat, ser. Advances in Information Security.
Springer-Verlag New York, 2008, vol. 36.

[2] P. Barford and V. Yegneswaran, “An inside look at botnets,” Malware

Detection, pp. 171–191, 2007.

[3] A. Ramachandran and N. Feamster, “Understanding the network-level
behavior of spammers,” SIGCOMM Comput. Commun. Rev., vol. 36,
no. 4, pp. 291–302, 2006.

[4] J. Nazario, “Blackenergy DDoS bot analysis,” Arbor Networks, Tech.
Rep., 2007.

[5] K. Chiang and L. Lloyd, “A case study of the rustock rootkit and
spam bot,” in HotBots’07: Proceedings of the first conference on First

Workshop on Hot Topics in Understanding Botnets. Berkeley, CA,
USA: USENIX Association, 2007.

[6] N. Daswani and M. Stoppelman, “The anatomy of clickbot.A,” in
HotBots’07: Proceedings of the first conference on First Workshop on

Hot Topics in Understanding Botnets. Berkeley, CA, USA: USENIX
Association, 2007.

[7] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon, “Peer-
to-Peer botnets: overview and case study,” in HotBots’07: Proceedings of

the first conference on First Workshop on Hot Topics in Understanding

Botnets. Berkeley, CA, USA: USENIX Association, 2007.

[8] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measurements
and mitigation of Peer-to-Peer based botnets: a case study on storm
worm,” in LEET’08: Proceedings of the 1st Usenix Workshop on Large-

Scale Exploits and Emergent Threats. Berkeley, CA, USA: USENIX
Association, 2008, pp. 1–9.

[9] D. Dittrich and S. Dietrich, “P2P as botnet command and control: a
deeper insight,” in 3rd International Conference on Malicious and Un-

wanted Software (MALWARE), Appl. Phys. Lab., Univ. of Washington,
Washington, DC, USA. Piscataway, NJ, USA: IEEE, 7-8 Oct. 2008
2008, pp. 41–48.

[10] Top-10 botnet outbreaks in 2009. [Online]. Available: http://blog.
damballa.com/?p=569

[11] Banking malware zeus sucessfully bypasses anti-virus detection.
[Online]. Available: http://www.ecommerce-journal.com/news/18221
zeus increasingly avoids pcs detection

[12] Zeus, king of the underground crimeware toolkits. Symantec
Corporation. [Online]. Available: http://www.symantec.com/connect/
blogs/zeus-king-underground-crimeware-toolkits

[13] T. Holz, M. Engelberth, and F. Freiling, “Learning more about the
underground economy: A case-study of keyloggers and dropzones,”
Computer Security ESORICS 2009, pp. 1–18, 2009.

[14] IDAPro - Multi-processor disassembler and debugger. [Online].
Available: http://www.hex-rays.com/idapro/

[15] PaiMei - a reverse engineering framework. [Online]. Available:
http://code.google.com/p/paimei/

[16] IDAPython: an IDA Pro plugin. [Online]. Available: http://d-dome.net/
idapython/

[17] Z. Li, Q. Liao, and A. Striegel, “Botnet economics: Uncertainty matters,”
Managing Information Risk and the Economics of Security, pp. 245–267,
2009.

[18] R. Ford and S. Gordon, “Cent, five cent, ten cent, dollar: hitting botnets
where it really hurts,” in NSPW ’06: Proceedings of the 2006 workshop

on New security paradigms. New York, NY, USA: ACM, 2007, pp.
3–10.

38

